3.6.79 \(\int \frac {\sqrt {e \cos (c+d x)}}{a+b \sin (c+d x)} \, dx\) [579]

3.6.79.1 Optimal result
3.6.79.2 Mathematica [C] (warning: unable to verify)
3.6.79.3 Rubi [A] (warning: unable to verify)
3.6.79.4 Maple [C] (warning: unable to verify)
3.6.79.5 Fricas [F]
3.6.79.6 Sympy [F(-1)]
3.6.79.7 Maxima [F]
3.6.79.8 Giac [F]
3.6.79.9 Mupad [F(-1)]

3.6.79.1 Optimal result

Integrand size = 25, antiderivative size = 292 \[ \int \frac {\sqrt {e \cos (c+d x)}}{a+b \sin (c+d x)} \, dx=\frac {\sqrt {e} \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{\sqrt {b} \sqrt [4]{-a^2+b^2} d}-\frac {\sqrt {e} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{\sqrt {b} \sqrt [4]{-a^2+b^2} d}+\frac {a e \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{b \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}+\frac {a e \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{b \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}} \]

output
arctan(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))*e^(1/2)/(-a^ 
2+b^2)^(1/4)/d/b^(1/2)-arctanh(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1/ 
4)/e^(1/2))*e^(1/2)/(-a^2+b^2)^(1/4)/d/b^(1/2)+a*e*(cos(1/2*d*x+1/2*c)^2)^ 
(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(b-(-a^2+b^2)^( 
1/2)),2^(1/2))*cos(d*x+c)^(1/2)/b/d/(b-(-a^2+b^2)^(1/2))/(e*cos(d*x+c))^(1 
/2)+a*e*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2 
*d*x+1/2*c),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*cos(d*x+c)^(1/2)/b/d/(b+(-a^ 
2+b^2)^(1/2))/(e*cos(d*x+c))^(1/2)
 
3.6.79.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 13.01 (sec) , antiderivative size = 361, normalized size of antiderivative = 1.24 \[ \int \frac {\sqrt {e \cos (c+d x)}}{a+b \sin (c+d x)} \, dx=-\frac {2 \sqrt {e \cos (c+d x)} \left (\frac {a \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},1,\frac {7}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right ) \cos ^{\frac {3}{2}}(c+d x)}{3 \left (a^2-b^2\right )}+\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \left (2 \arctan \left (1-\frac {(1+i) \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )-2 \arctan \left (1+\frac {(1+i) \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )-\log \left (\sqrt {-a^2+b^2}-(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (c+d x)}+i b \cos (c+d x)\right )+\log \left (\sqrt {-a^2+b^2}+(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (c+d x)}+i b \cos (c+d x)\right )\right )}{\sqrt {b} \sqrt [4]{-a^2+b^2}}\right ) \sin (c+d x) \left (a+b \sqrt {\sin ^2(c+d x)}\right )}{d \sqrt {\cos (c+d x)} \sqrt {\sin ^2(c+d x)} (a+b \sin (c+d x))} \]

input
Integrate[Sqrt[e*Cos[c + d*x]]/(a + b*Sin[c + d*x]),x]
 
output
(-2*Sqrt[e*Cos[c + d*x]]*((a*AppellF1[3/4, 1/2, 1, 7/4, Cos[c + d*x]^2, (b 
^2*Cos[c + d*x]^2)/(-a^2 + b^2)]*Cos[c + d*x]^(3/2))/(3*(a^2 - b^2)) + ((1 
/8 + I/8)*(2*ArcTan[1 - ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^ 
(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1 
/4)] - Log[Sqrt[-a^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[ 
c + d*x]] + I*b*Cos[c + d*x]] + Log[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a 
^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]]))/(Sqrt[b]*(-a^2 + 
b^2)^(1/4)))*Sin[c + d*x]*(a + b*Sqrt[Sin[c + d*x]^2]))/(d*Sqrt[Cos[c + d* 
x]]*Sqrt[Sin[c + d*x]^2]*(a + b*Sin[c + d*x]))
 
3.6.79.3 Rubi [A] (warning: unable to verify)

Time = 1.16 (sec) , antiderivative size = 287, normalized size of antiderivative = 0.98, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3180, 266, 827, 218, 221, 3042, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {e \cos (c+d x)}}{a+b \sin (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {e \cos (c+d x)}}{a+b \sin (c+d x)}dx\)

\(\Big \downarrow \) 3180

\(\displaystyle \frac {b e \int \frac {\sqrt {e \cos (c+d x)}}{b^2 \cos ^2(c+d x) e^2+\left (a^2-b^2\right ) e^2}d(e \cos (c+d x))}{d}-\frac {a e \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {b^2-a^2}-b \cos (c+d x)\right )}dx}{2 b}+\frac {a e \int \frac {1}{\sqrt {e \cos (c+d x)} \left (b \cos (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 b}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 b e \int \frac {e^2 \cos ^2(c+d x)}{b^2 e^4 \cos ^4(c+d x)+\left (a^2-b^2\right ) e^2}d\sqrt {e \cos (c+d x)}}{d}-\frac {a e \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {b^2-a^2}-b \cos (c+d x)\right )}dx}{2 b}+\frac {a e \int \frac {1}{\sqrt {e \cos (c+d x)} \left (b \cos (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 b}\)

\(\Big \downarrow \) 827

\(\displaystyle \frac {2 b e \left (\frac {\int \frac {1}{b e^2 \cos ^2(c+d x)+\sqrt {b^2-a^2} e}d\sqrt {e \cos (c+d x)}}{2 b}-\frac {\int \frac {1}{\sqrt {b^2-a^2} e-b e^2 \cos ^2(c+d x)}d\sqrt {e \cos (c+d x)}}{2 b}\right )}{d}-\frac {a e \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {b^2-a^2}-b \cos (c+d x)\right )}dx}{2 b}+\frac {a e \int \frac {1}{\sqrt {e \cos (c+d x)} \left (b \cos (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 b}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 b e \left (\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {e} \sqrt [4]{b^2-a^2}}-\frac {\int \frac {1}{\sqrt {b^2-a^2} e-b e^2 \cos ^2(c+d x)}d\sqrt {e \cos (c+d x)}}{2 b}\right )}{d}-\frac {a e \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {b^2-a^2}-b \cos (c+d x)\right )}dx}{2 b}+\frac {a e \int \frac {1}{\sqrt {e \cos (c+d x)} \left (b \cos (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 b}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {a e \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {b^2-a^2}-b \cos (c+d x)\right )}dx}{2 b}+\frac {a e \int \frac {1}{\sqrt {e \cos (c+d x)} \left (b \cos (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 b}+\frac {2 b e \left (\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {e} \sqrt [4]{b^2-a^2}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a e \int \frac {1}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sqrt {b^2-a^2}-b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 b}+\frac {a e \int \frac {1}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )} \left (b \sin \left (c+d x+\frac {\pi }{2}\right )+\sqrt {b^2-a^2}\right )}dx}{2 b}+\frac {2 b e \left (\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {e} \sqrt [4]{b^2-a^2}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{d}\)

\(\Big \downarrow \) 3286

\(\displaystyle -\frac {a e \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} \left (\sqrt {b^2-a^2}-b \cos (c+d x)\right )}dx}{2 b \sqrt {e \cos (c+d x)}}+\frac {a e \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} \left (b \cos (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 b \sqrt {e \cos (c+d x)}}+\frac {2 b e \left (\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {e} \sqrt [4]{b^2-a^2}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a e \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sqrt {b^2-a^2}-b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 b \sqrt {e \cos (c+d x)}}+\frac {a e \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b \sin \left (c+d x+\frac {\pi }{2}\right )+\sqrt {b^2-a^2}\right )}dx}{2 b \sqrt {e \cos (c+d x)}}+\frac {2 b e \left (\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {e} \sqrt [4]{b^2-a^2}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{d}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 b e \left (\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {e} \sqrt [4]{b^2-a^2}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \cos (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{d}+\frac {a e \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (c+d x),2\right )}{b d \left (b-\sqrt {b^2-a^2}\right ) \sqrt {e \cos (c+d x)}}+\frac {a e \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (c+d x),2\right )}{b d \left (\sqrt {b^2-a^2}+b\right ) \sqrt {e \cos (c+d x)}}\)

input
Int[Sqrt[e*Cos[c + d*x]]/(a + b*Sin[c + d*x]),x]
 
output
(2*b*e*(ArcTan[(Sqrt[b]*Sqrt[e]*Cos[c + d*x])/(-a^2 + b^2)^(1/4)]/(2*b^(3/ 
2)*(-a^2 + b^2)^(1/4)*Sqrt[e]) - ArcTanh[(Sqrt[b]*Sqrt[e]*Cos[c + d*x])/(- 
a^2 + b^2)^(1/4)]/(2*b^(3/2)*(-a^2 + b^2)^(1/4)*Sqrt[e])))/d + (a*e*Sqrt[C 
os[c + d*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/(b* 
(b - Sqrt[-a^2 + b^2])*d*Sqrt[e*Cos[c + d*x]]) + (a*e*Sqrt[Cos[c + d*x]]*E 
llipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/(b*(b + Sqrt[-a^2 
 + b^2])*d*Sqrt[e*Cos[c + d*x]])
 

3.6.79.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3180
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_ 
)]), x_Symbol] :> With[{q = Rt[-a^2 + b^2, 2]}, Simp[a*(g/(2*b))   Int[1/(S 
qrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (-Simp[a*(g/(2*b))   In 
t[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x], x] + Simp[b*(g/f)   Su 
bst[Int[Sqrt[x]/(g^2*(a^2 - b^2) + b^2*x^2), x], x, g*Cos[e + f*x]], x])] / 
; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 
3.6.79.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.39 (sec) , antiderivative size = 825, normalized size of antiderivative = 2.83

method result size
default \(\text {Expression too large to display}\) \(825\)

input
int((e*cos(d*x+c))^(1/2)/(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)
 
output
(1/4*e/b/(e^2*(a^2-b^2)/b^2)^(1/4)*2^(1/2)*(ln((2*e*cos(1/2*d*x+1/2*c)^2-e 
-(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2 
*(a^2-b^2)/b^2)^(1/2))/(2*e*cos(1/2*d*x+1/2*c)^2-e+(e^2*(a^2-b^2)/b^2)^(1/ 
4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))+ 
2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)+(e^2*(a^2-b^2)/b^2)^( 
1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c) 
^2-e)^(1/2)-(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4)))-1/8*(e* 
(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a*e/b^2*sum(1/_alph 
a*(8*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellipt 
icPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))*(e*(2*_alpha^2*b^ 
2+a^2-2*b^2)/b^2)^(1/2)*_alpha^3*b^2-8*b^2*_alpha*(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-4*b^ 
2/a^2*(_alpha^2-1),2^(1/2))*(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)+a^2*2 
^(1/2)*arctanh(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*d*x+1/2*c 
)^2-3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*a^2+2*b^2)*2^(1/2)/(e*(2*_al 
pha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/ 
2*c)^2))^(1/2))*(-e*sin(1/2*d*x+1/2*c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2) 
)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e*sin(1/2*d*x+1/2*c)^2*(2*sin 
(1/2*d*x+1/2*c)^2-1))^(1/2),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2))/sin( 
1/2*d*x+1/2*c)/(e*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2))/d
 
3.6.79.5 Fricas [F]

\[ \int \frac {\sqrt {e \cos (c+d x)}}{a+b \sin (c+d x)} \, dx=\int { \frac {\sqrt {e \cos \left (d x + c\right )}}{b \sin \left (d x + c\right ) + a} \,d x } \]

input
integrate((e*cos(d*x+c))^(1/2)/(a+b*sin(d*x+c)),x, algorithm="fricas")
 
output
integral(sqrt(e*cos(d*x + c))/(b*sin(d*x + c) + a), x)
 
3.6.79.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {e \cos (c+d x)}}{a+b \sin (c+d x)} \, dx=\text {Timed out} \]

input
integrate((e*cos(d*x+c))**(1/2)/(a+b*sin(d*x+c)),x)
 
output
Timed out
 
3.6.79.7 Maxima [F]

\[ \int \frac {\sqrt {e \cos (c+d x)}}{a+b \sin (c+d x)} \, dx=\int { \frac {\sqrt {e \cos \left (d x + c\right )}}{b \sin \left (d x + c\right ) + a} \,d x } \]

input
integrate((e*cos(d*x+c))^(1/2)/(a+b*sin(d*x+c)),x, algorithm="maxima")
 
output
integrate(sqrt(e*cos(d*x + c))/(b*sin(d*x + c) + a), x)
 
3.6.79.8 Giac [F]

\[ \int \frac {\sqrt {e \cos (c+d x)}}{a+b \sin (c+d x)} \, dx=\int { \frac {\sqrt {e \cos \left (d x + c\right )}}{b \sin \left (d x + c\right ) + a} \,d x } \]

input
integrate((e*cos(d*x+c))^(1/2)/(a+b*sin(d*x+c)),x, algorithm="giac")
 
output
integrate(sqrt(e*cos(d*x + c))/(b*sin(d*x + c) + a), x)
 
3.6.79.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {e \cos (c+d x)}}{a+b \sin (c+d x)} \, dx=\int \frac {\sqrt {e\,\cos \left (c+d\,x\right )}}{a+b\,\sin \left (c+d\,x\right )} \,d x \]

input
int((e*cos(c + d*x))^(1/2)/(a + b*sin(c + d*x)),x)
 
output
int((e*cos(c + d*x))^(1/2)/(a + b*sin(c + d*x)), x)